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A Player Selection Heuristic for a Sports
League Draft

Michael J. Fry, Andrew W. Lundberg, and Jeffrey W. Ohlmann

Abstract

Sports leagues conduct new player entry drafts in which franchises select, in a pre-determined
order, players to complement their existing rosters. We model the decision-making process of a
single sports franchise during a player selection draft. The basic premise of our model is that a
team selects a particular player based on a combination of the player’s estimated value, the value
of the other players currently available, and the team’s need at each position. We first conceptu-
alize a sports league draft using a stochastic dynamic program. However, this formulation is not
directly solvable for practical-sized problems due to the overwhelming computational complexity.
Therefore, we introduce additional assumptions and restrictions that result in a tractable deter-
ministic dynamic program. We implement the model within a spreadsheet-based decision support
system that allows the user to compute solutions under a variety of conditions. To benchmark our
approach, we perform computational comparisons against several competing draft strategies in a
series of simulated fantasy football drafts for the 2005 season. With perfect information regard-
ing opposing teams’ selections, our drafting strategy dominates these competing strategies. With
imperfect information, there are draft instances in which our method is not guaranteed to domi-
nate an alternate strategy; however, our drafting strategy outperforms the competing strategies on
average and is more robust on the instances tested. Furthermore, we demonstrate that the decision-
maker can incorporate information regarding the drafting behavior of opposing teams to improve
the performance of our method.

KEYWORDS: dynamic programming, sports draft



1 Introduction

In most professional sports leagues, new players enter into the league via a draft
in which franchises select players from a candidate pool in a pre-determined
order. These annual league drafts are critical instruments for the construc-
tion of a competitive team (Rapaport, 1993). In particular, the annual league
draft for the National Football League (NFL) is one of the most highly antic-
ipated and most-widely covered events in sports today. Television coverage of
the NFL draft now includes almost non-stop live footage and commentary on
ESPN. It is estimated that more than 4.7 million households tuned in to the
first day of the NFL draft in 2005 (Williams, 2006a).

The decision making process in a sports draft can be broken down into two
basic phases: player evaluation and selection strategy. In the player evaluation
phase, each team observes, measures and compares hundreds of draft-eligible
players. Additionally, professional scouting services and draft “gurus” provide
their own ratings and evaluations of draft prospects. As one can imagine,
player evaluations exhibit some degree of variability. In particular, teams may
value players’ abilities differently due to their system or style of play (Williams,
2006b).

Once teams have evaluated and ranked the draft-eligible players, this infor-
mation is shaped into a draft-day strategy for selecting players. Two prominent
(and often diametric) draft strategies commonly referenced by sports analysts
are (1) the best player available (BPA) strategy and (2) the needs-based strat-
egy. Proponents of the BPA strategy feel that if a team bases its selection
strictly on its needs, it risks the chance of passing over more talented play-
ers and therefore not maximizing the value acquired. Advocates of drafting
based on team-needs point out that strictly drafting the best player available
may result in a roster that has severe shortcomings in certain positions or skill
areas.

The draft strategy employed by most general managers (GMs) and coaches
is generally described as a combination of choosing the best player available
and choosing players based on the team needs. Chris Polian, general manager
of the NFL’s Indianapolis Colts and an admitted advocate of the BPA strategy
states, “You’re cognizant of how you’re trying to build the roster and what
your needs are, yet our philosophy is not to overtly reach” (Oehser, 2006).
The degree to which the ideal draft strategy is simply choosing the best player
available versus consideration of a team’s needs is widely debated. Our model
aims to quantify this balance to develop a more robust draft strategy.

In addition, the relative depth of the different player positions in the draft
should affect a team’s draft strategy. For example, consider the scenario in
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which the BPA at a certain point in a draft is player X of position A, but
there are many players of the same position who are valued only slightly less
than player X. The second best player available at this point in the draft is
player Y, of position B, but there is a large drop-off in talent at this position
after player Y. Drafting player X at this point would incur the cost of missing
the opportunity to draft a high-value player at another position. Therefore,
it may not make sense to draft player X at this point if a player of the same
position with similar ability would be available in future rounds.

We quantify the player selection process by modeling the sequential decision-
making of a single sports franchise during a draft. The basic premise of our
model is that a team should select a particular player based on consideration
of a player’s estimated value, the availability and value of other players, and
the team’s need at each position. We explicitly consider the relative depth of
the players available at different positions as well as the personnel needs of
the drafting team to develop a draft strategy that seeks to acquire players of
maximum collective value to the team.

The rest of this paper is outlined as follows. In §2, we survey academic
literature related to the topic of this paper. We discuss the development of a
model and solution methodology for draft-day decision-making in §3. In §4,
we analyze the effectiveness of our proposed solution in comparison to several
competing draft strategies. We conclude the paper with a summary in §5.

2 Literature Review

Sports drafts are a relatively unexplored application of sequential decision-
making. We are not aware of any previous work that utilizes similar method-
ology as this paper to model a sports draft. We provide a brief survey of
research involving aspects of a sports draft.

Brams and Straffin (1979) consider the selection strategies of teams from
a game theoretic perspective and reveal paradoxes regarding player selection
in small examples (two- and three-team leagues). In their model, each team
exhibits ordinal preferences for players, which are known to the entire league.
Brams and Straffin (1979) prove that if each team strictly adheres to its own
player ranking to determine its selections, then the resulting selections across
the league are Pareto-optimal. Conversely, they show that if teams do not
adhere to their player rankings and instead select players in an attempt to
exploit the differences in player rankings across teams, then the resulting draft
outcome may not be Pareto-optimal.

In comparison to Brams and Straffin (1979), our model considers a metric
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of player value rather than relying solely on ordinal rank and it further dif-
ferentiates players by their position played. Furthermore, while the results of
Brams and Straffin (1979) are intriguing, we conjecture that for sufficiently
large sports leagues, a team’s opportunity to exploit the differences in other
teams’ preferences by altering their selection strategy is mitigated. That is, we
argue that teams in sufficiently large leagues have no incentive to deviate from
their ordinal preferences. While our model is general enough to consider such
“gaming” actions, we are more concerned with the situation in which a team
may possibly deviate from picking the best player available due to the relative
consideration of team need and the draft’s depth at that player’s position.

Summers et al. (2005) determine the optimal strategy for drafting a fantasy
team in a NHL playoff-pool. In this contest, the contestants draft the players
they think will score the most points (goals, assists, etc.) in the NHL Stanley
Cup playoffs. A contest of this nature brings up interesting issues, as a draftee
has to consider the relative success of a player’s team as well as the skill of
the player (note that a player on a team that goes deeper into the playoffs will
have more opportunities to score points). Summers et al. (2005) attempt to
maximize the probability that a certain lineup will outscore all other lineups,
and uses simulation to test the optimal strategy. While the problem and
methodology of Summers et al. (2005) is fundamentally different than our
treatment of a sports draft, we observe some general similarities. In both
Summers et al. (2005) and our work, the proposed strategies are compared to
competing strategies, which are designed to simulate the decision-making logic
used by opponents. Also, in both works, computer power and processing time
become an issue, and methods for increasing the efficiency of the algorithms
are explored.

Price and Rao (1976) consider league policies regarding the ordering of
teams’ selections in the draft. In this analysis, they conclude that having the
worst teams pick first in a draft may not be the best way to format a draft
if the objective is to facilitate the development of parity between the teams.
Their model quantifies total player quality on a team, which the authors assert
is increased by the addition of new talent from the draft (the probability that
a player becomes a star is dependent on draft position), and lessened by the
decline in quality of players due to age and injuries. Their conclusion is that
it takes too long for weaker teams to get better, and they propose a number
of alternative draft schemes which would decrease the time it takes to increase
the overall parity in a league. In our analysis, we do not concern ourselves
with such league policy. Rather, we determine a player selection strategy for a
known draft ordering of teams; the mechanism used to determine this ordering
is inconsequential to our results.
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3 Development of Model

We utilize dynamic programming (DP) to develop our sports draft model.
Dynamic programming is a mathematical technique for modeling sequential
decision-making problems and is, therefore, well-suited to model a sports
draft. While conceptualizing a sports draft with a DP formulation is rela-
tively straight-forward, such models become intractable as the problem size
grows due to the “curse of dimensionality” (Bellman, 1957). Therefore, we in-
troduce additional assumptions and restrictions that facilitate the solution of
the model within a spreadsheet implementation. To solve the model, we trans-
late the DP formulation into a linear program (LP) in order to take advantage
of commonly available solution engines (e.g., Microsoft Excel’s Solver).

3.1 Dynamic Programming Formulation

In this section, we present a formulation of a sports draft from the perspective
of a single decision maker’s team as a dynamic program. We assume that each
player available in a draft is classified into a position at which he will play,
and that these positions are common to each team in the league. For instance,
in football, a team drafts players to play positions such as quarterback (QB),
running back (RB), wide receiver (WR), etc.

To model the impact of a team’s current roster, and therefore its team
needs, on its draft strategy, we assume that each team possesses a “needs
vector” that defines the maximum number of players at each position that a
team would consider drafting. Let ~ik denote the n-vector whose jth element
reflects the number of players at position j that team k would consider drafting,
where n is the total number of positions. That is, ~ik reflects the “positional
needs” of team k. Note that the total number of specified needs could be
larger than the number of draft picks, D, i.e., ||~ik||1 ≥ D.

We denote the decision maker’s team as team 0. We view the draft as
a series of decision epochs at which the decision maker (DM) must make a
selection each time it is team 0’s turn to select a player. For notational and
expository convenience, we assume that team 0 drafts exactly once in each
round. We make this assumption to clarify our explanation of the model; when
we refer to a point in time as “at round t,” it is clear that we are referring
to the single point in round t at which it is team 0’s turn to select a player.
We note that this assumption implies no loss of generality; if this assumption
does not hold, the model still accurately describes a sports draft, but now the
accompanying explanation must more carefully describe the decision epoch to
ensure clear identification.
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Before we state our model formulation, we must define some additional
notation. Let It denote the set consisting of the needs vectors for each team
in the league at round t, for t = 1, . . . , T . Let At be the set that contains all
players available in round t, for t = 1, . . . , T . Let rt(a,~i0) be the value added
when team 0 selects player a (from At) in round t when its needs vector is
given by~i0. The value of a player to team 0 depends on team 0’s current roster
(including draft selections in previous rounds) as expressed through its current
needs vector. That is, the value of choosing a player a in round t depends on
the needs vector in round t. This is because the value a player adds to a team
can depend on what role he will play on the team. A simple way of determining
a player’s “valued added” to a team would be to distinguish between whether
the potential draftee is anticipated to be a starter or to provide depth as a
reserve player. We model this by discounting the value of a back-up player at
position i by βi, where 0 < βi ≤ 1, for i = 1, . . . , n.

The process of evaluating players and defining an appropriate functional
measure for rt(a,~i0) that estimates a drafted player’s contribution to the team
is itself a difficult problem. NFL teams such as the Atlanta Falcons have devel-
oped systematic methods to grade potential draftees and implicitly evaluate
their impact on current and future rosters (Williams, 2006b). Such systems
could provide the necessary input into our dynamic programming model. We
leave the determination of an appropriate metric to team management and
note that our dynamic programming formulation remains valid for any addi-
tive measure for evaluating a potential draftee’s contribution to a team.

The fundamental idea behind a dynamic programming formulation is that
one can determine the optimal sequence of decisions by considering their im-
pact on the future. In a sports draft, uncertainty about the future stems from
the actions of opposing teams. To model uncertainty, let πt(It+1, At+1|It, At, a)
denote the probability of transitioning from state (It, At) to (It+1, At+1) given
that team 0 selects player a in round t. Let vt(It, At) be defined as the maxi-
mum value a team can draft from round t through the end of the draft (round
T ) if in state (It, At) in round t. Thus,

vt(It, At) =

max
a∈At

rt(a,~i0) +
∑

It+1,At+1

πt(It+1, At+1|It, At, a)vt+1(It+1, At+1)

 (1)

where vT+1(·) = 0.
Equation (1) represents a stochastic dynamic program that conceptually

models the draft from the perspective of team 0. Unfortunately, this model can
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only be solved for a trivially-small problem in terms of the number of teams,
player positions, and available players; otherwise, the number of states, (It, At),
creates an intractable model. Furthermore, the transition probabilities, πt, are
generally very difficult to express as they are functions of the opposing teams’
selection strategies. To obtain a computationally tractable model, we intro-
duce Assumptions 1, 2, and 3 which reduce the stochastic dynamic program
in Equation (1) to a deterministic dynamic program.

Assumption 1. The decision maker knows the player valuation of every op-
posing team.

Assumption 2. The decision maker knows every opposing team’s initial needs
vector.

Assumption 3. The decision maker knows every opposing team’s selection
strategy.

Although Assumption 1 may seem like a strong assumption, we believe
that it is realistic, especially for potential early-round draft choices of teams,
in an era of computerized player rating services and scouting combines. For
instance, in the NFL there are a pair of scouting organizations, BLESTO
and National Football Scouting, to which all but five NFL teams subscribe
(Williams, 2006b). While individual teams tailor player rankings based on
the input of their own coaches, scouts, and team management, teams have a
general sense of each others’ rankings through scouting intelligence (Williams,
2006b). As mentioned previously, there are many so-called draft “gurus” that
specialize in projecting draft picks. Curtis (2001) and Rutter (2006) discuss
the performance of some of the better known draft gurus in projecting recent
NFL drafts. The best gurus are able to correctly predict approximately 80%
of the players that are ultimately chosen in the first round of the NFL draft1.
Similarly, we justify Assumption 2 by noting that teams are aware of their
opponents’ rosters and have an accurate notion of the position needs for each
team. Indeed, the sports media commonly reports each team’s needs prior to
the actual draft.

Assumption 3 states that the DM is aware of the decision rule that each
opposing team implements to select players throughout the draft. This as-
sumption is supported by the observation that many teams often assign scouts
to research other teams in order to anticipate their actions both on game day
and on draft day. Furthermore, we mitigate the restriction of this assumption

1The website http://www.thehuddlereport.com tracks the performance of many popular
NFL draft gurus.
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by testing a variety of common draft selection strategies to govern other teams’
actions in our computational examples.

Assumptions 1, 2, and 3 eliminate the uncertainty in the dynamic program-
ming formulation described in Equation (1) since we know with certainty how
each opposing team will draft when faced with a specified pool of available
players. However, the pool of available players at each team’s draft slot is
directly affected by the other teams’ previous selections, including the DM’s
prior selections – which are decision variables. Therefore, to determine the
pool of players available to the DM in round t, it suffices to know the DM’s
draft selections in all previous rounds as opposing teams’ selections can then
be deterministically determined. Thus, the state space at round t must include
the DM’s previous draft selections, so that the DM can accurately anticipate
the draft selection of every opposing team.

For t = 2, . . . , T , let ~ht be the vector containing the history of the DM’s
draft choices in rounds 1, . . . , t − 1, and let ~h1 = {}. Equation (1) can be
reduced to the deterministic dynamic program as follows:

vt(~ht) = max
a∈At(~ht)

{
rt(a,~ht) + vt+1(~ht; a)

}
(2)

where vT+1(·) = 0. Equation (2) is valid for each possible ~ht because at each
point in the draft from the first overall draft slot to team 0’s slot in round t
we can determine which players are available and how we assume each team
(including team 0) drafts given these pools of available players.

The ability to solve Equation (2) for practical-sized problems is still dic-
tated by the “curse of dimensionality.” For example, without any action elim-
ination, a league of K teams in a repeating ordinal (non-serpentine) draft
results in ΠT−1

i=0 (m− iK) possible states (histories) over the course of a T -
round draft, where m is the total number of players available at team 0’s first
draft slot.

Note that many of these states will not lie on an optimal path in the
corresponding network, i.e., there are many histories that correspond to sub-
optimal draft strategies. However, in general it is difficult to significantly
prune these states without losing the guarantee of optimality. Nevertheless, we
develop a series of restrictions to prune the state space and obtain a tractable
model.

3.2 Restricted Model Formulation

To obtain a model that we can quickly solve in a spreadsheet-based implemen-
tation, we implement a series of restrictions to the deterministic DP formula-
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tion in Equation (2) to prune the state space.

Restriction 1. For each round t, we consider a single available-player pool,
At, that is independent of ~ht, the decision maker’s previous selections in rounds
1, . . . , t− 1.

Strictly speaking, for Equation (2), the pool of players available to team 0
in round t relies on the DM’s selections in previous rounds, i.e., At is a function
of ~ht. However, we observe that for sufficiently large sports leagues, At(~ht) is

nearly identical (and often times exactly identical) for the various values of ~ht.
This observation reflects the fact that although the DM’s deterministic projec-
tions of the actions of opposing teams may not precisely predict the selections,
they are accurate in identifying which players will be taken before the DM’s
next selection. Via Restriction 1, we take advantage of this observation and
simplify the way in which we determine the pool of available players at each
decision epoch. Instead of generating an available-player pool for every possi-
ble selection history at round t, we instead create a single available-player pool
at round t by assuming that the DM’s team (in addition to all other opposing
teams) select players according to some known selection rule. Notationally,
this creates a set of T available-player pools, A1 ⊃ A2 ⊃ . . . ⊃ AT , rather than
the combinatorially large number of action sets, At(~ht), for t = 1, . . . , T .

While we possibly introduce error in the forecast of available-player pools
in future rounds by adopting Restriction 1, we observe that any such difference
in the DM’s forecasted At and any single At(~ht) typically consists of only a
few players and occurs multiple rounds in the future (where the error is less
likely to impact the current decision). We mitigate the effect of any error
in the available-player pools by using a rolling horizon (Alden and Smith,
1992). That is, after making the selection in the current round (round t), we
update the model based on the opposing teams’ selections up to the DM’s
draft slot in round t + 1 at which point we resolve the model to determine the
player selection. Thus, as the draft evolves, we update the available-player
pool to reflect the actual players chosen and then resolve the problem in each
round. This limits the effect of the draft’s unpredictability on determining the
available-player pools.

If we maintain the strict definition of At as the set of players available
to the DM in round t, |At| can be overwhelmingly large for practically-sized
problems. By only considering the selection of players that will not be available
in a future round, Restriction 2 reduces the number of possible actions in round
t.

Restriction 2. In round t, the decision maker only considers drafting players
in the set Ωt = (At − At+1) ⊂ At.
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Counter-example

There exist situations where utilizing Restriction 2 will result in
drafting less than maximum value. Consider a simple example
from a football draft where the initial needs vector, ~i0, consists
of three players: one quarterback and two running backs. The
quarterbacks that are projected to be available in rounds 1, 2, and
3 are QA, QB, and QC , respectively. Their values are 100, 99, and
98 points, respectively. The best running back available is RA,
valued at 80 points and projected to be available in both rounds 1
and 2. The next best RB available is RB, valued at 79 points and
projected to be available in both rounds 1 and 2. The best RB
projected to be available in round 3 is RC , worth 70 points.

According to Restriction 2, we will not draft RA or RB in the 1st
round, since we know they will both be available in the 2nd round.
Therefore we would draft QA in the 1st round, followed by RA in
the second round, and RC in the 3rd round. This yields a total
value drafted of 100 + 80 + 70 = 250 points. However, we can
generate greater value by first selecting RA, followed by RB and
then QC . This yields a total value drafted of 80 + 79 + 98 = 257
points.

This counter-example occurs when Restriction 2 forces us to delay the
selection of a player until a later round s and this delay prevents the acquisition
of other highly DM-valued players who are available in round s (and therefore
all previous rounds), but not in any later round. We remark that this counter-
example is contrived, but may occur in situations in which the decision-maker
values players significantly different than the opposing teams, i.e., the “Billy
Bean” counter-example (Lewis, 2004). In such cases, if this counter-example
did arise, we note that it could be remedied by suitably modifying the opposing
teams’ player rankings. To illustrate, in this specific counter-example, we
would elevate RA’s ranking by the opposing teams so that we project this
player to only be available in round 1. Then, our algorithm would consider
RA as a potential round 1 selection.

Restrictions 1 and 2 allow us to reformulate the deterministic DP described
by Equation (2). Specifically, Restriction 1 allows us to modify the state
definition of our DP formulation, since we no longer include the history of
the DM’s selections in the state space. It suffices to define the state space as
~i0t , the needs vector of the DM’s team in round t. The modified formulation,
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which we henceforth call the “restricted model,” is

vt(~i
0
t ) = max

a∈Ωt

{
r(a,~i0t ) + vt+1(g(~i0t , a))

}
, (3)

where g(~i0t , a) is a function that returns the needs vector resulting when the
DM selects player a while in state ~i0t .

The price of the reduced complexity obtained from Restrictions 1 and 2 is
the possibility that an optimal solution to Equation (3) may not coincide with
an optimal solution to the complete deterministic formulation described by
Equation (2). However, these restrictions do hold in the optimal solution to
Equation (2) in many cases and our computational experiments suggest that
it does not significantly alter the recommended policy. In §4, we present a
small computational example that suggests that these restrictions have little
to no effect on the solution.

3.3 Solution Approach

To solve our draft model within a spreadsheet-based decision support system,
we convert the restricted DP formulation described by Equation (3) into a
linear program to take advantage of the large number of readily available
software tools for solving linear programs such as Microsoft Excel’s Solver
(see Puterman, 1994, pages 223-231, for a discussion of transforming dynamic
programming models into equivalent linear programs). The objective of the
corresponding linear program (displayed below) is to maximize the total value
drafted when beginning with a needs vector of ~i01. There is a constraint for
every round-needs vector-action combination. Upon solving, there will be at
least one binding constraint for each needs vector. The action that corresponds
to the binding constraint specifies the player to be selected in order to maximize
the draft value.

min v1(~i
0
1)

s.t. vt(~i
0
t ) ≥ r(a,~i0t ) + vt+1(g(~i0t , a)) ∀t,~i0t , and a ∈ Ωt.

We solve the linear program using Microsoft Excel Solver within a decision
support system based on macros written with Visual Basic for Applications
that allows for easy and robust implementation of our model. In our compu-
tational testing, we observe that some instances result in linear programs with
more constraints than the maximum allowed by Microsoft Excel Solver. For
these instances, we reduce the number of constraints in the linear program by
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assuming a forecast horizon of k rounds where k ≤ T − t. A forecast horizon is
a finite problem horizon with the property that the corresponding immediate-
round optimal decision remains optimal regardless of projections beyond this
horizon (Federgruen and Tzur, 1996). Thus, a forecast horizon allows us to
reduce the amount of future data we need to forecast to solve for an optimal
player selection in the immediate round. While theoretically determining a
lower bound on the length of a forecast horizon is in general difficult, our com-
putational testing suggests assuming a forecast horizon of five or six rounds
does not impact the DM’s immediate player selection decision.

Computation times for reasonably-sized problems (e.g., a ten-team, 16-
round draft using a forecast horizon of five rounds) are less than 30 seconds
using Microsoft Excel 2003 on a 2.66 GHz desktop PC with 512 MB RAM.
These fast solution times allow our model to be run multiple times under
various assumptions regarding the selection behavior of opposing teams. In
addition, fast solution time facilitates the execution of the rolling horizon
approach described in §3.2.

4 Analysis

In this section, we evaluate the effectiveness of our proposed solution approach
with respect to a series of benchmarks. First, we compare the restricted dy-
namic programming formulation of Equation (3) to the complete deterministic
dynamic program represented by Equation (2) to gauge the effect of Restric-
tions 1 and 2. Then, we compare the restricted model solutions to several
competing draft strategies by performing a series of simulated drafts. We con-
clude the analysis by using our model to evaluate the relative value of different
spots in a draft (i.e., the value of drafting first versus drafting last in a round,
etc.).

For the purposes of this analysis, all simulated drafts are based on the
2005 fantasy football season. Fantasy football is a game where participants
construct teams of actual NFL football players. The participants then score
points based on the actual players’ statistical performances during games. It
is estimated that more than 15 million people participated in fantasy sports
in the United States in 2005 and that the market impact surpasses $1 bil-
lion annually (Boyle, 2005). We choose to focus on fantasy drafts due to
the transparent metric to value players. Projected player values and draft
rankings are widely available in fantasy sports; we obtain player data from
http://www.fantasyguru.com and determine two metrics for our draft analy-
sis: player value and player rank. Player value is based on predicted player
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performance in 2005; a player’s value is the estimated number of fantasy points
a player will earn in a fantasy football season under assumed scoring rules.
Player value is the basis of the DM’s valuation system in our testing. We
define a player’s rank as the average draft position of the player as determined
from looking at a sample of historical fantasy football drafts for the 2005 sea-
son as given by http://www.fantasyguru.com.2 In our testing, we use player
rank (and in some cases, player value) to anticipate the selections of opposing
teams and project the available-player pools for future rounds.

To simulate the opposing teams’ behavior, we assume that they adhere to
a known draft strategy. Each of the draft strategies is defined in terms of
drafting a player feasible with respect to its needs vector; each draft choice
must be feasible with respect to the current needs vector of the drafting team.
For example, a team cannot draft a third QB if the original needs vector
contains less than three QBs. We consider the following four competing draft
strategies based on the implicit assumption that teams draft to improve the
value of their own rosters rather than impair the value of their opponents’
rosters.

Draft Strategy I Team picks the highest ranked feasible player.

Draft Strategy II Team picks the highest ranked feasible starter. If no
starting position remains to be filled, team picks the highest ranked
feasible player.

Draft Strategy III Team picks the highest ranked feasible starter, unless
that player is ranked x ∈ [1, 2, 3, . . .) slots lower than the highest ranked
feasible player available (this strategy is also referred to as the “hybrid”
strategy). If no starting position remains to be filled, team picks the
highest ranked feasible player.

Draft Strategy IV Team picks the highest valued feasible player.

Draft strategies I, II, and III imply that a team’s selections are based on
player rank (estimated average draft positions of players). Strategy I strictly
adheres to the player rankings regardless of position, while a team following
strategy II will not draft any backup player until all starting positions have
been filled. Strategy III acknowledges that it may be beneficial to select a
highly-ranked player who will be a backup at a position instead of a lower-
ranked starter at another position. Thus, strategy III is a hybrid of strategies

2A partial list of player values and ranks used for the analysis contained in this paper is
contained in Appendix B; complete lists are available from the authors.
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I and II that mandates the selection of starters unless a highly-ranked backup
player is available.

For strategy IV, we assume a team’s draft strategy is based on player
value (estimated number of fantasy points). Strategy IV simply chooses the
highest valued player. For the purposes of our testing with strategy IV, we
assume that each opposing teams’ player valuation is identical to the DM’s
player valuation. While our model is capable of incorporating team-specific
player valuations, we present test results for strategy IV using common player
valuations to maintain a league-wide consensus of player value and equitably
illustrate our model’s ability to maximize value drafted.

We execute serpentine-style drafts (the common format of fantasy sports
drafts) throughout our analysis. In this style of draft, the order in which teams
select players is reversed in alternating rounds. That is, the team that picks
first in round n picks last in round n + 1. We assume that each team begins
with the same needs vector; each team in a fantasy league typically starts the
year with a blank roster.

We emphasize that our dynamic programming model has no inherent re-
liance on the structure of fantasy football. We select fantasy football as our
computational testing arena due to the readily available data. Our model could
be implemented in a real sports league draft by determining player valuations
and defining an appropriate function to measure a drafted player’s contribu-
tion to a team’s current roster. To forecast the actions of opposing teams,
player rankings could be determined from mock drafts and scout feedback. In
present-day draft operations, many NFL teams already collect and utilize this
information in a less formalized manner (Williams, 2006b). Furthermore, our
model allows the specification of a different initial needs vector for each team
in the league (based on their current roster).

4.1 Comparing Restricted Model to Complete Deter-
ministic Model

To evaluate the effect of Restrictions 1 and 2, we compare solutions obtained
from the restricted model corresponding to Equation (3) to the solutions gen-
erated by solving the exact deterministic model described by Equation (2).
Due to the computational complexity required to solve Equation (2), we limit
our consideration to a small computational example. Consider a ten-team,
four-round draft where the needs vector for each team is (1 QB, 2 RB, 1 WR)
and one of the RBs is considered a backup. We assume that we pick fifth in the
odd rounds and sixth in the even rounds. For the purpose of projecting the
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Restricted Formulation
Round Pick Position Value

1 D. Culpepper QB 343
2 C. Dillon RB 224
3 B. Westbrook RB 128
4 N. Burleson WR 190

Total Value Drafted: 885

Complete Formulation
Round Pick Position Value

1 D. Culpepper QB 343
2 C. Dillon RB 224
3 B. Westbrook RB 128
4 R. Wayne WR 191

Total Value Drafted: 886

Table 1: Comparison of Projected Drafts (At Round One) Resulting from
Restricted and Complete Deterministic Models

draft and determining the available-player pools (Restriction 1), we assume
that all teams follow draft strategy III.

The recommended draft choices for rounds one through four (as projected
at round one) using both the complete formulation and the restricted formula-
tion are shown in Table 1. At round one, the use of the restricted formulation
results in a projected total loss of one point of value (885 versus 886) due to the
anticipated choice of R. Wayne in the fourth round instead of N. Burleson.
This is caused by our use of Restriction 1 which generates the available-player
pool for each round independent of our draft history. In this particular case,
A4 does not contain R. Wayne as he is projected to be selected prior to the
DM’s draft slot in round four. However, recall that our algorithm is intended
to be run in real-time during the draft and thus only the first draft choice
of D. Culpepper will be implemented. Our model would then be rerun in
each subsequent round after updating the available-player pool to reflect those
players that are actually taken. Updating the available-player pool and resolv-
ing the restricted model in each round results in the exact same players chosen
as in the complete model shown in Table 1, and thus, there is no loss of value
from using the restricted formulation in this example.

Further testing of different scenarios suggests that this small example is
representative of the performance of the restricted model. Therefore, we an-
ticipate that the restricted model will result in very little value loss except
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in the most pathological of examples. While the value loss from using the
restricted formulation is typically negligible, the time savings is substantial.
For a 16-round draft with needs vector (2 QB, 4 RB, 4 WR, 2 TE, 2 D, 2 K)3,
the complete formulation would require approximately 2.2 billion available-
player pools to be generated as a function of possible draft choice histories.
Given our computational results (where we can generate about five different
available-player pools per second for a problem of this size), the complete for-
mulation of this problem would require approximately 4.4 × 108 seconds (or
about 14 years) of continuous processing time to set up the problem. On the
other hand, our restricted formulation requires less than 30 seconds to set up
the same-sized problem. For the computational experiments in the remainder
of the paper, we implement the restricted version of our model represented by
Equation (3).

4.2 Restricted Model Versus Competing Draft Strate-
gies

To evaluate the benefit of using the restricted model versus commonly-employed
draft strategies based on rules-of-thumb, we perform a series of computational
experiments involving simulated drafts. In all computational experiments, we
assume that there is a consensus among our opponents on the value of each
player. While this is not required (Assumption 1 can be satisfied by knowing
the possibly unique player valuation of each team), this provides experimental
control and allows us to investigate our model’s ability to maximize value in
instances where the notion of player value is consistent across the league. By
assuming that teams share the same player valuations, the benefit of the draft
strategy based on our model comes from considering the impact of the DM’s
current selection on consequent selections. In contrast, instances of drafts in
which teams have varied valuations of players will allow our model to improve
the draft process both by considering the impact of a current selection on
consequent selections and by possibly taking advantage of discrepancies in our
opponents’ valuation schemes.

In the first set of experiments, we consider drafts in which the DM has
perfect knowledge of each opposing team’s draft strategy. That is, Assump-
tion 3 holds perfectly in the testing of §4.2.1. In §4.2.2, we consider instances
in which Assumption 3 does not hold perfectly.

3This represents a common team roster in fantasy football leagues where
QB=quarterback, RB=running back, WR=wide receiver, TE=tight end, D=team defense,
and K=kicker.

15

Fry et al.: Player Selection Heuristic for a Sports League Draft

Published by The Berkeley Electronic Press, 2007



Instance Instance Instance Instance Instance
Team #1 #2 #3 #4 #5

1 III II I III I
2 II III IV I III
3 III III II II II
4 II III IV IV III
5 Decision Maker’s Team
6 I II IV II IV
7 II IV II I IV
8 II I II IV II
9 III I III II I
10 IV IV II I II

Table 2: Assignment of Opposing Teams’ Strategies in Five Considered Draft
Instances

4.2.1 Drafts with Perfect Knowledge of Opponents’ Draft Strate-
gies

To evaluate drafts in which the DM has perfect knowledge of each opposing
team’s draft strategy, we first generate five draft instances by randomly assign-
ing each opposing team’s draft strategy4. Table 2 displays the strategies being
employed by the opposing teams in each of these five randomly generated draft
instances5.

For each of the five draft instances, we consider a ten-team, 16-round draft.
We assume that all teams begin with a needs vector of (2 QB, 4 RB, 4 WR,
2 TE, 2 D, 2 K). Half of the players to be drafted at each position will be
considered backups and we will assume that backups are discounted by a
value of β = 0.6.6 When solving our model, we use a forecast horizon length
of k = 5 rounds and project the available-player pools using the knowledge of
the opposing teams’ draft strategies. For the purposes of projecting available-
player pools for future rounds, we use draft strategy III to forecast the DM’s

4A draft strategy P ∈ {I, II, III, IV } is assigned randomly to each team subject to the
conditions that in each draft instance: 1) each draft strategy is used by at least one opposing
team; 2) no more than four opponents use the same draft strategy.

5The small sample here is due to the time-consuming nature of completing each draft. We
believe that the impact of assigning various draft strategies by opposing teams is apparent
from this sample.

6While we assume a single discount value, β, for all player positions, one could also
assign different values, βi, for each player position i to reflect the relative worth of backups
at different positions.
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Figure 1: Perfect Information: Restricted Model versus Competing Strategies

As Figure 1 illustrates, our model generates solutions resulting in more
total value drafted than the competing draft strategies in each of the five
draft instances. Our model is able to achieve greater value since it explicitly
considers the relative depth of players at each position. The solutions to our
model will tend to draft players at a particular position so that they are selected
just before significant declines in player value occur at that position. Figure
2 demonstrates this observation by plotting the value for the top 40 players
at the running back position. Our model will typically recommend selecting
two starting running backs (such as Rudi Johnson and Curtis Martin) before
the sharp decline in RB value, occurring just two running backs after Curtis
Martin. Thus, our model seeks to ensure filling our starting running back
needs before the sharp decline by considering the impact of the current draft
pick on the evolution of the draft. In contrast, standard draft rules-of-thumb
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are myopic; they simply suggest taking the best player currently available
(according to some defined metric) without explicitly considering the impact
of this action on future draft selections.
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Figure 2: RB Values Ordered by Expected Selection

4.2.2 Drafts with Imperfect Knowledge of Opponents’ Draft Strate-
gies

In this section, we relax Assumption 3 by considering drafts in which the col-
lection of opponents’ draft strategies that the DM utilizes to project available-
player pools for future rounds does not perfectly match the actual draft strate-
gies implemented by the opposing teams. Our computational experiments ex-
amine the robustness of our model to the discrepancies in the projected versus
realized available-player pools created by this imperfect information. As Fig-
ure 2 illustrates, one concern in using our model is that, if the DM’s draft
projections are not accurate, we may be exposing ourselves to potentially se-
vere losses in player value by waiting to take a certain player immediately
before a sharp decline in value at that player position. That is, by miscalcu-
lating the evolution of the draft, we may wait too long and end up drafting a
player after a sharp decline in value at a position. Clearly, no DM will ever
know precisely the strategies and player rankings used by all opponents. To
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test the effect of imperfect knowledge of opponents’ draft strategies, we devise
a pair of computational experiments.

We consider a pair of computational “imperfect information” experiments
with varying degrees of the DM’s awareness of opposing teams’ draft strategies.
In the first experiment, we consider a “worst-case” scenario in which the DM
is totally näıve with respect to the opposing teams’ draft strategies. Lacking
any a priori knowledge of opposing teams’ draft strategies, we assume that
the DM implements our model and “guesses” that opposing teams will draft
according to strategy III (Hybrid). Table 2 again displays the actual strategies
being employed by each of the opposing teams in each of these instances.

Figure 3 compares the performance of our model (using the näıve projec-
tion) to the performance of competing draft strategies in each of the five draft
instances of Table 2. Our model no longer outperforms the competing strate-
gies in every instance (see strategies II and III in Instance #3 and strategy
II in Instance #5), although on average it still outperforms the competing
strategies (see Table 4). In each case where our model is outperformed, the
difference in total value drafted is less than 4 value points (0.2%).

Any deterministic assumption of the opposing team’s drafting strategies
will inevitably generate incorrect projected available-player pools when there
is uncertainty as to how the opposing teams will actually choose players. In
the testing corresponding to Figure 3, we assume that the DM has no infor-
mation regarding the opposing teams’ draft strategies and simply projects the
available-player pools at future draft epochs by assuming each team drafts ac-
cording to strategy III. Rather than simply project available-player pools by
assuming each team in the league drafts according to the same strategy, it is
intuitive that a better approach is to incorporate any knowledge that might be
available, even if it is incomplete, regarding opposing teams’ draft strategies.
While the DM may not have exact information regarding the draft strategy
of each team, the DM may be able to develop a heterogeneous assignment of
draft strategies that will, at the aggregate level, better estimate the evolution
of the draft. It is less important to project exactly where each player will be
drafted (i.e., by which team), than it is to have an accurate projection of which
players will be available to the DM in each round of the draft.

In the second computational experiment, we consider a situation where the
DM possesses some aggregate information about the draft strategies across
the league and uses this aggregate information (perhaps from past drafts) to
develop an assignment of opposing teams’ draft strategies. Specifically, we
assign a heterogeneous mix of draft strategies to the opposing teams in order
to project the available-player pools. For the purposes of our computational
experiment, we develop this assignment (given in Table 3) by randomly as-
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Figure 3: Imperfect Information: Restricted Model with Näıve Projection
versus Competing Strategies

signing strategies to the opposing teams subject to the following restrictions:
(1) each strategy is used by at least two and at most three of the opposing
teams; (2) at least one of the teams using each strategy must draft before and
after the DM. We continue to assume that the DM will choose according to
Draft Strategy III for the purpose of satisfying Restriction 1.

Figure 4 illustrates the results when implementing our model, using the
assignment in Table 3 to project the available-player pools, on each of the
five “actual” draft instances of Table 2. Utilizing the aggregate, although im-
perfect, information regarding draft strategies, our model generates solutions
resulting in more total value drafted than the competing draft strategies in
each of the five draft instances.

Comparing the actual projected player pools and players drafted7 in this

7The complete projected player pools and lists of players drafted for each scenario are
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Draft
Team Strategy

1 I
2 II
3 IV
4 III
5 III
6 III
7 IV
8 II
9 I
10 IV

Table 3: DM’s (Imperfect) Belief of Opponents’ Strategies Used To Project
Available-Player Pools

case to that illustrated in Figure 3, we note several findings that help explain
our improvement. We notice that the projected player pools appear to be more
accurate when we allow for a heterogeneous assignment of draft strategies. In
particular, we appear to do better at projecting when less valuable player
positions will be drafted (e.g., kickers and defenses). To generate the results
in Figure 3, we assumed that all opponents were using strategy III in order
to project the available-player pool. However, if an opponent was actually
using strategy II (selecting the highest ranked starter), we would overestimate
how long some players would be available, particularly those players at lower-
valued positions. As a consequence, we often waited too long to draft players
at the kicker and defense positions, thereby missing out on many of the highly
valued players at these positions.

As Figure 4 attests, our heterogeneous mix of strategy assumptions for op-
ponents now captures that at least some opponents may be selecting according
to strategy II. Although the DM’s assumed belief of the opposing teams’ draft
strategies (Table 3) is largely inaccurate at the individual team level in each
instance of Table 2, incorporating this knowledge at the aggregate level results
in an improved draft strategy by more accurately anticipating the selection of
players by opposing teams. In these examples, this knowledge was conveyed
via the improved projection of players at the kicker and defense positions.

Table 4 summarizes the value of information in our testing across all five
instances. On average, our model outperforms the competing strategies even

not presented here, but they are available from the authors.
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Figure 4: Imperfect Information: Restricted Model using Table 3 For
Projection versus Competing Strategies

% Value Loss
Value Drafted Compared To:

DM’s Draft Strategy Avg. Std.Dev. RN RH RP

RN . Restricted, Näıve 2159.7 8.3 - 0.6% 1.8%
RH . Restricted, Heterogeneous 2173.7 8.3 - - 1.2%
RP . Restricted, Perfect 2200.1 23.0 - - -
I. Highest Ranked 2119.0 33.3 1.9% 2.5% 3.7%
II. Highest Ranked Starter 2147.0 19.3 0.6% 1.2% 2.4%
III. Hybrid (x=10) 2138.5 21.5 1.0% 1.6% 2.8%
IV. Highest Valued 2036.0 22.6 5.7% 6.3% 7.5%

Table 4: Performance Across All Five Draft Instances of Table 2
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with the näıve method of projecting available-player pools. Furthermore, our
analysis confirms the intuition that more information, even if it is at the aggre-
gate league level, improves the effectiveness of our model. Figure 5 compares
the performance of our model under varying degrees of information known by
the DM to the best competing strategy for each of the five draft instances.
As illustrated, the restricted model provides significantly better results across
these instances. For additional computational testing, we refer the reader to
Appendix A.
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Figure 5: Comparison of Draft Strategy II and the Restricted Model with
Varying Degrees of Information on Each Draft Instance from Table 2

4.3 Evaluating the Worth of a Draft Position

Another potential use of our model is in determining the worth of a given
drafting position. Serpentine-style drafts are thought to promote parity in
drafting positions; however, we show below that there are still differences in the
relative worth of different draft positions. Table 5 evaluates the relative worth
of each possible drafting position for a ten-team league in the 2005 fantasy
football draft. To generate the results shown here, each team is assumed
to determine draft selections according to our restricted model (where the
available-player pools are projected using draft strategy III). In other words,
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our restricted model has been solved 160 consecutive times to generate all 16
draft picks for each of the 10 teams. This represents a case where all teams in
the league are particularly shrewd drafters since all teams choose according to
our model.

Team Value Drafted % of Total Points Drafted
1 2219.7 10.46%
2 2208.1 10.40%
3 2136.8 10.07%
4 2114.5 9.96%
5 2106.1 9.92%
6 2089.8 9.84%
7 2074.6 9.77%
8 2105.8 9.92%
9 2106.4 9.92%
10 2066.1 9.73%

Table 5: Value of Draft Positions When All Teams Draft According to
Restricted Model

Note in Table 5 that while Team 1 (who drafts first in odd-numbered
rounds and last in even-numbered rounds) receives the maximum total value
drafted, the valuations are not monotonically decreasing. For example, the
total value drafted by Team 8 exceeds the total value drafted by Teams 6
and 7. This indicates a possible trading opportunity. Team 7 could offer to
swap draft positions with Team 8. Because teams are often eager to move
up in draft position in the first round, a less-than-shrewd Team 8 manager
may agree to this and even may agree to give additional compensation for the
earlier first-round draft pick, even though our analysis shows that Team 8 is
in the better draft position. A similar analysis could be done to evaluate the
worth of trading draft picks in a single (or multiple) rounds. As our model
can be solved quickly, various drafting scenarios can be analyzed to determine
the value gained (or lost) in trading individual draft picks.

Table 6 shows a similar listing of total drafted value by draft position, but
here only Team i (i ∈ [1, 2, . . . , 10]) chooses players according to our model; all
other teams are assumed to choose players based on draft strategy II. Table 6
gives an indication of the draft positions in which our algorithm can be best
used to exploit “average” opponents (i.e., opponents who are choosing players
similarly to how historical evidence of past drafts indicate players will be
chosen). Here we see that Team 3 now receives the highest total value drafted,
ahead of even Team 1. We also notice that Teams 8 and 9 continue to do quite
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Team, i Value Drafted
1 2223.3
2 2172.9
3 2228.3
4 2173.9
5 2179.3
6 2180.1
7 2186.9
8 2188.0
9 2191.6
10 2164.1

Table 6: Value of Draft Positions When Only Team i Drafts According to
Restricted Model and Opposing Teams use Draft Strategy II

well. Again, the total values drafted are both unequal and non-monotonic.
Thus, there again appears to be potential inequities in draft positions. We
leave it to further consideration of how to determine a more equitable draft
position assignment strategy – an issue first examined by Price and Rao (1976)
for non-serpentine style sports drafts.

Clearly, results such as those in Tables 5 and 6 are dependent on the partic-
ular player valuations of the players available to be drafted. Thus, the relative
value of draft positions would be expected to vary from year-to-year. However,
our model can determine the relative worth of different draft positions for any
particular draft player pool and valuation system.

5 Conclusion

Developing a tractable model to determine player selections in a sports draft
is a very challenging task. A team’s decision is a function of many variables
including the decisions of all opposing teams, the pool of players available
at each of the DM’s decision epochs, and the positional needs of each team.
A stochastic model that captures the uncertainty in a sports draft would be
ideal. However, a direct formulation of a stochastic dynamic program to model
a sports draft is intractable by classical solution methods and relies upon
transition probabilities that are functions of the opposing teams’ selection
strategies. By introducing several model assumptions and restrictions, we
obtain a more manageable deterministic dynamic program that considers both
the positional needs of the team as well as the relative depth of players at each
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position in the draft to develop a draft strategy. This restricted model can be
solved quickly within a spreadsheet-based implementation allowing for real-
time, up-to-date decision support during a draft.

We compare our model’s suggested draft strategy to several competing
draft heuristics. We find that our model results in a higher total player value
drafted than any of the competing heuristics in instances where the DM has
perfect information regarding the opponents’ draft strategies. When uncer-
tainty is introduced regarding the opposing draft strategies, we find that our
model still performs very well in comparison to competing draft strategies.
While imperfect information may create instances in which our method does
not dominate competing strategies, we demonstrate that it is possible for the
decision maker to incorporate information regarding league trends to improve
the effectiveness of our approach. This suggest that any error that our model’s
assumptions and restrictions introduce can be compensated for with aggregate-
level draft information. Thus, we believe that our model and solution methods
are applicable to real-world scenarios where uncertainty clearly exists regarding
opponents’ actions. We also demonstrate several potential uses of our model
including the determination of the relative worth of different draft slots. We
further show that a serpentine-style draft can still result in unequal allocation
of player talent and that the value of draft slots is non-monotonic.

Our work represents one of the first attempts at modeling realistic-sized
drafts for team sports. Previous work has either considered leagues contain-
ing only a few teams (as in Brams and Straffin, 1979) or special draft situa-
tions (e.g., Summers et al., 2005) that reduce the decision-making complexity.
Possible extensions of our work include the development of alternative ap-
proximation models and associated solution methods. We choose to solve our
model via linear programming because this makes it quite easy to utilize exist-
ing solvers and to incorporate our model into a useful user-interface (namely
spreadsheet software such as Microsoft Excel). However, the LP formulation
results in a large number of constraints and, in general, LP algorithms are
not the most efficient methods for solving dynamic programming recursions.
Alternative solution methods that intelligently search the state space could be
effective; an example of such a solution method is the A∗ algorithm (Pearl,
1984). Regarding the stochastic version of our model, to determine the tran-
sition probabilities necessary to specify Equation (1), one could examine mul-
tiple historical drafts (in the case of fantasy sports) or multiple mock drafts
(for real sports leagues). However, this model still has very large state spaces;
thus, effective approximate dynamic programming solution methods are even
more important for solving practical problem instances.
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Appendix A Additional Computational Results

A.1 Further Testing of Robustness of Competing Strate-
gies

In the results presented in the §4.2, draft strategy II was the best competing
strategy in each of instances. However, we demonstrate in this section that
this may not always be the case. Suppose the DM has perfect information
regarding each opposing team’s draft strategy, and each opposing team is
using the same strategy. This results in the four groups of five draft instances
given in Table 7. We distinguish each group of drafts by the assumption used
for the opponents’ draft strategy (P ∈ {I, II, III, IV }). The DM’s drafting
strategy is given by Q, where Q ∈ {R, I, II, III, IV }, where Q = R refers
to the drafting strategy as defined by the restricted dynamic programming
model. Thus, Draft {P, Q} defines the specific draft in which the opponents’
drafting strategy is given by P and the DM’s drafting strategy is given by Q.

For each Draft {P, Q}, we consider a ten-team, 16-round draft. We assume
that all teams begin with a needs vector of (2 QB, 4 RB, 4 WR, 2 TE, 2 D, 2
K). Half of the players to be drafted at each position will be considered backups
and we will assume that backups are discounted by a value of β = 0.6. When
solving our model, we use a forecast horizon length of k = 5 rounds. Figure 6
displays the results for these drafts. In each chart we fix the opponents draft
strategy, P , and compare the total value drafted by our restricted model to
each of the competing draft strategies.

Figure 6 shows that the solutions to our model generate greater total value
drafted than the competing draft strategies, regardless of the opponents’ draft
strategy. While our model leads to the highest value drafted in each case,
the performances of the competing strategies are much less robust. Although
strategy II is again the best competing strategy on average, as illustrated by
Table 8, it only out-performs the other competing strategies in one of the four
draft instances.

A.2 Further Testing on Value of Information Regarding
Opposing Teams’ Draft Strategies

In the results presented in §4.2, there was a monotonic increase in the value
drafted as the DM incorporated more information into the mechanism to gen-
erate available-player pools (see Figure 5). The computations of Figure 5
suggest that perfect information is better than no information, and some in-
formation is better than no information. In this section, we demonstrate that
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Opponents’ Strategy, P DM’s Strategy, Q
R - Restricted Model

I - Highest Ranked Player I - Highest Ranked Player
II - Highest Ranked Starter
III - Hybrid, x=10
IV - Highest Valued Player
R - Restricted Model
I - Highest Ranked Player

II - Hightest Ranked Starter II - Highest Ranked Starter
III - Hybrid, x=10
IV - Highest Valued Player
R - Restricted Model
I - Highest Ranked Player
II - Highest Ranked Starter

III - Hybrid, x=10 III - Hybrid, x=10
IV - Highest Valued Player
R - Restricted Model
I - Highest Ranked Player
II - Highest Ranked Starter
III - Hybrid, x=10

IV - Highest Valued Player IV - Highest Valued Player

Table 7: Computational Tests on Four Draft Instances In Which Opponents
Each Employ the Same Strategy

Value Drafted
DM’s Draft Strategy, Q Avg. Std.Dev. % Loss
R. Restricted Model 2226.0 60.2 -
I. Highest Ranked 2118.8 81.7 4.8%
II. Highest Ranked Starter 2170.3 84.3 2.5%
III. Hybrid (x=10) 2152.5 70.6 3.3%
IV. Highest Valued 2116.3 22.3 4.9%

Table 8: Performance of Draft Strategies Across the Four Homogenous Draft
Instances

the effect of varying degrees of information between the two extremes of perfect
information and no information is not necessarily predictable.

Specifically, we consider the imperfect information case in which the DM
projects the available-player pools at future rounds according to the assign-

28

Journal of Quantitative Analysis in Sports, Vol. 3 [2007], Iss. 2, Art. 5

http://www.bepress.com/jqas/vol3/iss2/5
DOI: 10.2202/1559-0410.1050



Opponents' Strategy, P =I

2000.0

2050.0

2100.0

2150.0

2200.0

2250.0

R. Relaxed
Model

I. Highest
Ranked 

II. Highest
Ranked Starter

III. Hybrid (x=10) IV. Highest
Valued 

Our Drafting Strategy, Q

T
ot

al
 V

al
ue

 D
ra

fte
d

Opponents' Strategy, P =II

2000.0

2050.0

2100.0

2150.0

2200.0

R. Relaxed
Model

I. Highest
Ranked 

II. Highest
Ranked Starter

III. Hybrid (x=10) IV. Highest
Valued 

Our Drafting Strategy, Q

T
ot

al
 V

al
ue

 D
ra

fte
d

Opponents' Strategy, P =III

2000.0

2050.0

2100.0

2150.0

2200.0

2250.0

R. Relaxed
Model

I. Highest
Ranked 

II. Highest
Ranked Starter

III. Hybrid (x=10) IV. Highest
Valued 

Our Drafting Strategy, Q

T
ot

al
 V

al
ue

 D
ra

fte
d

Opponents' Strategy, P =IV

2000.0

2050.0

2100.0

2150.0

2200.0

2250.0

2300.0

2350.0

R. Relaxed
Model

I. Highest
Ranked 

II. Highest
Ranked Starter

III. Hybrid (x=10) IV. Highest
Valued 

Our Drafting Strategy, Q
T

ot
al

 V
al

ue
 D

ra
fte

d

 

Figure 6: Draft Results Comparing Restricted Model Solutions to Competing
Strategies

Draft
Team Strategy

1 I
2 I
3 IV
4 I
5 I
6 I
7 IV
8 I
9 I
10 IV

Table 9: DM’s (Imperfect) Belief of Opponents’ Strategies Used To Project
Available-Player Pools

ment given in Table 9. With respect to the five draft instances of Table 2,
the DM’s beliefs in Table 9 are less informed (or at least not more informed)
than the DM beliefs in Table 3 according to any obvious metric, e.g., number
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of teams’ strategies correctly identified, total number of each type of strat-
egy, etc. However, Figure 7 illustrates that there are instances in which the
DM would draft better if using the “less informed” beliefs, suggesting that
the manner in which the DM should incorporate information about opposing
teams’ behavior has potential as an area of future research.
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Figure 7: Imperfect Information: Restricted Model Using Table 9 Versus
Using Table 3
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Appendix B Partial List of Player Values and

Rankings

Rank Player Position Value
1 L. Tomlinson RB 347.5
2 P. Holmes RB 305
3 S. Alexander RB 304
4 P. Manning QB 351.5
5 E. James RB 254
6 D. McAllister RB 231
7 W. McGahee RB 230.5
8 J. Lewis RB 226
9 D. Davis RB 225.5
10 R. Moss WR 219
11 D. Culpepper QB 343
12 J. Jones RB 225
13 C. Dillon RB 224
14 C. Portis RB 219.5
15 K. Jones RB 219
16 R. Johnson RB 218.5
17 A. Green RB 214.5
18 T. Holt WR 216.5
19 T. Owens WR 216
20 T. Barber RB 214
21 C. Johnson WR 215.5
22 B. Westbrook RB 213.5
23 M. Harrison WR 211.5
24 L. Jordan RB 213
25 C. Martin RB 212.5
26 J. Walker WR 211
27 S. Jackson RB 212
28 T. Gonzalez TE 171.5
29 J. Horn WR 194
30 A. Johnson WR 191.5
...

...
...

...
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